skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Littke, Kim"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Patterns in foliar nitrogen (N) stable isotope ratios (δ15N) have been shown to reveal trends in terrestrial N cycles, including the identification of ecosystems where N deficiencies limit forest ecosystem productivity. However, there is a gap in our understanding of within-species variation and species-level response to environmental gradients or forest management. Our objective is to examine the relationship between site index, foliar %N, foliar δ15N and spectral reflectance for managed Douglas-fir (Pseudotsuga menziesii) and loblolly pine (Pinus taeda) plantations across their geographic ranges in the Pacific Northwest and the southeastern United States, respectively. Foliage was measured at 28 sites for reflectance using a handheld spectroradiometer, and further analyzed for δ15N and N concentration. Unlike the prior work for grasslands and shrubland species, our results show that foliar δ15N and foliar %N are not well correlated for these tree species. However, multiple linear regression models suggest a strong predictive ability of spectroscopy data to quantify foliar δ15N, with some models explaining more than 65% of the variance in the δ15N. Additionally, moderate to strong explanations of variance were found between site index and foliar δ15N (R2 = 0.49) and reflectance and site index (R2 = 0.84) in the Douglas-fir data set. The development of relationships between foliar spectral reflectance, δ15N and measures of site productivity provides the first step toward mapping canopy δ15N for these managed forests with remote sensing. 
    more » « less
  2. Abstract Understanding the chemical composition of our planet's crust was one of the biggest questions of the 20th century. More than 100 years later, we are still far from understanding the global patterns in the bioavailability and spatial coupling of elements in topsoils worldwide, despite their importance for the productivity and functioning of terrestrial ecosystems. Here, we measured the bioavailability and coupling of thirteen macro‐ and micronutrients and phytotoxic elements in topsoils (3–8 cm) from a range of terrestrial ecosystems across all continents (∼10,000 observations) and in response to global change manipulations (∼5,000 observations). For this, we incubated between 1 and 4 pairs of anionic and cationic exchange membranes per site for a mean period of 53 days. The most bioavailable elements (Ca, Mg, and K) were also amongst the most abundant in the crust. Patterns of bioavailability were biome‐dependent and controlled by soil properties such as pH, organic matter content and texture, plant cover, and climate. However, global change simulations resulted in important alterations in the bioavailability of elements. Elements were highly coupled, and coupling was predictable by the atomic properties of elements, particularly mass, mass to charge ratio, and second ionization energy. Deviations from the predictable coupling‐atomic mass relationship were attributed to global change and agriculture. Our work illustrates the tight links between the bioavailability and coupling of topsoil elements and environmental context, human activities, and atomic properties of elements, thus deeply enhancing our integrated understanding of the biogeochemical connections that underlie the productivity and functioning of terrestrial ecosystems in a changing world. 
    more » « less